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Lifecycle Analysis Integration into Scalable Open-source Numerical models
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Research Question: What are the future impacts and tradeoffs of present-day novel
technologies accounting for transitions in the energy and manufacturing sectors
as well as technology improvements?

Method: Coded, prospective life cycle assessment using long-term, coherent scenarios
of the energy-economy-land-climate system to quantify the effects of background
system changes and foreground technology improvements for various technologies.

Value-add: Inform R&D prioritization for novel technologies and preemptively address
potential tradeoffs and unintended consequences of their large-scale deployment.
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Vision / Motivation

Prospective system models
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Comprehensive but scenarios often depend on limited
metrics. Models are primarily cost-driven.

URL: nrel.gov; pnnl.gov

Goal and scope

Life Cycle Assessment

Ecosystem Impacts Human | Ri D
Climate Change Orzone Depletion Fossil Fuel
Acid Rain Smog Freshwater
Eutrophication Particulate Matter Soil
Land Use Change Carcinogens Forest
Solid Waste Toxicity Grassland
Toxicity Minerals

LCI - Life Cycle Inventory

LCIA - Life Cycle Impact Assessment
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Areas of protection

Human health
Ecosystem health

Natural resources

Interpretation

Multi-metric but results are context-specific. Analyses have
varying system boundaries (hard to compare).

URL: https:

eplca.jrc.ec.europa.eu/lifecycleassessment.html;

https:,

www.sciencedirect.com/topics/engineering/life-cycle-impact-assessment
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LiAISON Technical Details & Information Flow
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Future information from certain
S _' industrial sectors is predicted
\ and plugged into the LCI

Life Cycle Inventory Prospective system model



Methodology - LIAISON Technical Details
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Integrated Background Scenarios

[ ] Long_term’ gIObaI projections of the How do Integrated Assessment Models work?

| .,
coupled energy-economy-land- - -_— s
climate system. —
* Derived from Integrated P L e i
Assessment Models (IAM), e.g., i j i L

G C AM (PNNL), : L Policies :,._r Land system i .II:I:;pE?:‘?:"‘
* Highly stylized but comprehensive. '

* All scenarios are coherent, cross-
sectoral and represent dynamics oo oo ooty Soci e terece ety
across physical and social systems. —— e

Climate ! Land use

CarbonBrief

g - . £ |
« Comparability: Standardized = I
outputs (SSP-RCP combinations). 1
-« [ I " 26
IW%!T:thM Impact NREL | 7
https://www.carbonbrief.org/qa-how-integrated-assessment-models-are-used-to-study-climate-change/ pacts




Sector Projections

The background scenarios define technology compositions and efficiencies across four sectors:
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Case Study

Comparing hydrogen production technologies

under a dynamically changing supply system of

power, cement, steel and fuels — a prospective
LCA case study.




Power-to-Hydrogen (PtH,)

Technologies:

* Steam methane reforming (reference) : H, generation
via steam methane reforming of natural gas to produce
syngas and then H,. (Baseline)

* Solid-oxide electrolysis (SOE): H, generation via
electrolysis in a fuel cell with a solid oxide/ ceramic
electrolyte (adv: high efficiency).

* Polymer-electrolyte-membrane electrolysis (PEME):

H, generation via electrolysis in a cell with a solid
polymer electrolyte (adv: low weight and volume).

Adjusted to background deployment levels in the
respective scenarios.

Foreground dynamics via learning-by-doing in the
deployment stage.

PEME electrolysis PEME electrolysis | Hydrogen >
ReRi cabol ™ stack production | plant, operation
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CASE

Baseline Climate Target

Scenario

STUDY Scenario
(1.5°C, 2050 net zero)

VISUALIZED (no policy)
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Research Question 1

Life Cycle metrics of Global Warming Footprint, Metal
Depletion, Human Toxicity, Particulate Matter Exposure
for production of 1 kg of H, under dynamic supply chains
for power, cement, steel and fuel production.

Steam methane reforming (reference)
Polymer-electrolyte-

membrane electrolysis (PEME)
Solid-oxide electrolysis (SOE)

Research Question 2

Same study expanded with improving cost and
performance parameters of H, technologies via learning
by doing (deployment) over time.

Polymer-electrolyte-
membrane electrolysis (PEME) with
technology learning



RQ1: Life cycle metrics production of 1 kg of H2 under dynamic supply chains

for power, cement, steel and fuel production evolution.
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Insights and Conclusions

Electrolysis-based H, requires clean power to reach CO, -parity with SMR.

Yet, in a Climate Scenario Human and Ecotoxicity levels are not reduced. Rather, the
categories stagnate and even temporally increase. The largest reduction for these
indicators happens in the Baseline Scenario because of increasing natural gas power
production (and a respective reduction in coal-based power).

PM exposure levels improve drastically in the Baseline (natural gas to coal shift) and
improve further in a Climate Scenario (higher penetration of renewable energy).

Metal depletion levels remain stable in the Baseline but increase sharply in the Climate
Scenario with the high penetration of solar, wind, and bioenergy (with CCS) generation.

Major insight 1: Temporal LCA results of the technologies are directly influenced by the
projected technology context, power in particular.

Major insight 2: Neither contextual scenario improves all LCA indicators (heterogenous
result across metrics), indicating a strong need for improving the full life cycle of
renewable energy technologies.



RQ2: Impact of energy efficiency of electrolysis process (PEME) improvement
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* Contribution of supply chain
(background) evolution has the major
contribution.

* However, even energy efficiency
improvement of the electrolysis
technology can contribute to a significant
reduction.

Climate target (1.5°C)

* The efficiency improvement of
electrolysis technology has very low
contribution to emission reduction.

» Reduction of carbon footprint of supply
chain, including grid, is more important
for decarbonization of hydrogen
production process.



RQ2: Impact of energy efficiency of electrolysis process (PEME) improvement
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* The supply chain change increases metal
depletion (positive values).

e Alternatively, the energy efficiency
improvement of electrolysis
technology results in significant metal
depletion reduction.

Climate target (1.5°C)

 Metal depletion due to supply chain
evolution is so large, it makes the net
metal depletion value increase with
time.

» Different environmental impact indicators
are affected differently by supply chain
evolution and process evolution
separately.



Prospective LCA of PEME process for the climate target (2°C)

scenario using pathway information from IMAGE and GCAM.

Global Warming We integrate background changes as predicted by GCAM
304 and integrate them into Ecoinvent 3.8 using LIAISON
o We compare the LCA results from background changes as
S 20- predicted by different IAM models.
@ . . .
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107 SSP2-RCP2.6. Different IAMs have different ways to achieve
emission reductions and global change.
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